Neighborhoods of univalent functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Sharp Neighborhoods of Univalent Functions

For 5 > 0 and /(z) = z + a2z2 + ••■ analytic in \z\ < 1 let the 5neighborhood of/, Ns(f), consist of those analytic functions g(z) — z + b2z2 + ••• with E"_2 k\ak bk\ < S. We determine sufficient conditions guaranteeing which neighborhoods of certain classes of convex functions belong to certain classes of starlike functions. We extend some recent results of St. Ruscheweyh and R. Fournier and, ...

متن کامل

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

Neighbourhoods of Univalent Functions

The main result shows that a small perturbation of a univalent function is again a univalent function, hence a univalent function has a neighbourhood consisting entirely of univalent functions. For the particular choice of a linear function in the hypothesis of the main theorem, we obtain a corollary which is equivalent to the classical Noshiro–Warschawski–Wolff univalence criterion. We also pr...

متن کامل

Coefficients of Univalent Functions

The interplay of geometry and analysis is perhaps the most fascinating aspect of complex function theory. The theory of univalent functions is concerned primarily with such relations between analytic structure and geometric behavior. A function is said to be univalent (or schlichi) if it never takes the same value twice: f(z{) # f(z2) if zx #= z2. The present survey will focus upon the class S ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1981

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1981-0601721-6